
Approximate Solutions for Mixed Boundary Value 
Problems by Finite-Difference Methods 

By V. Thuraisamy* 

Abstract. For mixed boundary value problems of Poisson and/or Laplace's 
equations in regions of the Euclidean space En, n > 2, finite-difference analogues are 
formulated such that the matrix of the resulting system is of positive type. Dis- 
cretization errors are established in a manner to reveal the continuous dependence 
of the rate of convergence on the smoothness of the solution. Isolated data sin- 
gularities and their application to exterior problems are also discussed. U 

1. Introduction. In this paper we are concerned with approximating the solution 
u(x) of the mixed boundary value problem 

-AU W = f W) x E R., 

(1 .1) u(x) + a(x)u(x) = 91(z) x E OR1, O3n 
U(X) = 92(X), x E- R2. 

The region R is a bounded connected set in the n-dimensional Euclidean space 
E., the boundary OR of R is OR1 U OR2 and OR, = OR1(') U ORi(2). In general each 
of OR1(1), OR1(2) and OR2 may be a union of a finite number of surface elements. With 
x (X1, X2, **, x), v (2/)x/2, 0/On is the outward normal derivative and 
f, gl, g2 are given functions. a(x) is a piecewise differentiable function on OR1. 
Existence, uniqueness and regularity of the solution of (1.1) is discussed, e.g., in 
[6], [11], [14], [17]. 

We restrict a(x) to be nonnegative and let it be zero on OR1i1) and positive on 
OR1,2). We also assume that OR2 # OR and that if OR2 = 0 then there is a surface 
element of nonzero measure in OR1M2i. We sometimes refer to OR1(1) as the 'Neumann 
piece' or the surface where the 'Neumann data' are prescribed, with similar no- 
menclature for the other boundary sets. 

Finite-difference approximations to this problem have been studied by several 
authors (see e.g., [1], [2], [131, [18]) for the case n = 2, where second-order con- 
vergence is established only in [2]. In [7], [12], second-order local approximations to 
the boundary operators are given without convergence proofs. We shall use the 
scheme in [2] for the plane and also develop others which are valid in all dimensions. 
All our analogues lead to matrices of positive type (see [3] for definitions). 

In Sections 5, 6 and 7 we consider the question of reducing the regularity as- 
sumptions on the data for problem (1.1) when f(x) 0. We shall refer to this prob- 
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lem as (1.1)'. The last three sections deal with isolated singularities and exterior 
problems. The analyses here are along the same lines as in [4] and [5] where the 
authors discuss the Dirichlet problem (see also [9], [10], [15], [16]). 

2. Difference Approximations. Using uniform mesh-spacing of width h, we 
denote by Rh the set of mesh-points in R and by ORh the points common to the mesh- 
lines and 3R. From now on a mesh-point shall always mean a member of 
Rh = Rh U ORh. We define N(x) C Rh to be the set of 2n 'neighbors' of x which are 
no further than a distance h from x. If N(x) C Rh we say that x is in the set Rh' 

of regular interior points and set Rh* = Rh- Rh'. L(x) constitutes the closed line 
segments connecting x to its 2n neighbors. Using a multi-index a = (ca1, a22 

. . . X an) 

Jal = al + a2 + - - - + an, we write any derivative of order Jal as Dau and use the 
notation Mk(u) (or just Mk) to indicate constants which depend on supO<?k DIu 
over any specified set. Unspecified K and 1 shall always denote generic constants. 

For the discrete Laplacian Ah in Rh', we take the usual (2n + 1) point operator. 
I.e., 

U~,ji(x)-h2{U(x + hi) - 2U(x) + U(x -hi) 
(2.1) n 

AhU(X) = E U. i(x), 
i=1 

where the vector hi has jth component h5 q2i = 1, , n. For u(x) E C4(L(x)) 

(2.2) AhU(X) - Au(x) = h E {d 4(t) + da oiu ) } 

where Eli), n(i) are intermediate points on L(x) satisfying xi - h < ts(i) < xi < 
1i(i) < xi + h and xi = -i(i) = qj(i) forj $ i. For x C Rh* let x - flihi, x + aihi, 
0 < a i, i _ 1, be the two neighboring mesh-points of x in Rh lying on the mesh- 
line through x in the ith direction. We then define 

(2.3) U~'~Ix) 2 4U(x + aihi) (1 + ?~U(x) + U(x -flih<) 
(ai + ai)h2 { a + /3,i } 

Again if u(x) C C3 (L(x)), then 

(2.4) Ah(')U(X) - AU(X) = _- {E +/I O,) a /3,)(a)X )3 3 E. {(ai + 
d 

i) (ixl 
('7 3) 

fis 3()i) 

where, now, xi - O3 h < t,(i) < xi < vi(i) < xi + ash and xj = -/O = qj(i) for 
j P i. For x C Rh* we have a second approximation AhO0) through 

(2.5) U~,(x) ai + hi U.( ( 

When (2.5) is used, the 'reduced' matrix obtained by deleting rows and columns 
corresponding to boundary points is symmetric, but since the approximation is only 
of order zero its usefulness is limited. 

We shall now develop approximations for the boundary operator. In two di- 
mensions a simple first-order approximation to the normal derivative can be con- 
structed by choosing two points in Rh, one on each side of the normal, together with 
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the boundary point, such that, the resulting matrix is of positive type. To generalize 
to higher dimensions: at a boundary point x we choose a local artesian coordinate 
system such that the nth coordinate direction coincides with the interior normal. 

X(3) 

Ah 

I- 
X(2) 

x x(2) 

x2 

(a) (b) 

0 xl 

FIGURE 1 

For any point x E R such that the line segment x x i is in R we have, if u C C2(R), 
n 

(2.6) u (x() = u (x) + E xi U)Uxi(x) + M2h 2. 
i=1 

We pick n such points x(i in Rh (within O(h) of x) and n numbers bj such that 

(2.7) (X)nXn(B)nXl= 

10 
L 1 _ 

where the columns of the matrix X are the coordinates of the point x i and we have 
written B for the vector with components bj. (2.6) implies that Ibj1 < K h'1, j = 1, 

*, n. X is nonsingular as soon as the points x i are not in an (n - 2)-dimensional 
manifold and B > 0 (required for positivity of the matrix) when all the cofactors 
of elements of the last row are of the same sign. Another first-order approximation 
follows. First for n = 2, if u C C2(R), then for points as in Fig. 1(a) we may write 

U x) - (1 - X) U(X '1) - U Xu(x2~) (2.8) Ix - 
= un(x) + M2h. 

When n = 3, y can be chosen in the closure of a right triangle with two sides 
equal to h as in Fig. 1(b), where x (1) X(2) x3) are three of the vectices of a mesh- 
square. Similarly for n > 4 we take y in an n-hedron with (n - 1) edges equal to h 
such that Ix - yj is uniformly less than lh (where we can take 1 ? (n + 3)1/2 if 
2h < infimum of the radius of curvature of OR) and we have in general 
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(2.9) I(x) ) () + O(h) 

where the Pi are nonnegative and their sum is unity. Thus we can define a first-order 
approximation to the normal derivative either using (2.7) or using (2.9) by 

51u(x) ,j biju(x) -u(x()) I 
1=1 

suchthatO < h b Kfori = 1, 2, * *,n. 

3. Discrete Analogues. Based on the several difference operators developed in 
the last section, we shall now write discrete analogues of (1.1), following the defini- 
tion of an operator B1 introduced for notational convenience. 

(3.1) BU(x) - U(x) + a(x)U(x), 

(3.2a) -Ahu(x, h) = f(x), x E Rh, 

(3.2b) Blu(x, h) = gq(x), x C ORlh, 

(3.2c) u(x, h) = 92(X), X C 0R2,h. 

We note that Eqs. (3.2) actually represent four distinct sets of equations depending 
on the choice of operators in Rh* and on OR1,h. The following lemma is an easy con- 
sequence of the foregoing definitions. 

LEMMA 1 (MAXIMUM PRINCIPLE). If a mesh-function is such that 

-AhV(X) 0 X C Rh, 

(3.3) BV(x) > 0, x C ORl,,h 

V(x) 0, x Ca R2,, 

ien 

V(x) ? Ofor all x Rh. 

We now define discrete analogues of Green's functions to systems (3.2). We 
shall call these Robin's functions. For y C Rh, let R(x, y, h) be such that 

Ah,xR(X, y, h) = h715(x, y), x C Rh, 

(3.4) Bl,,R(x, y, h) = h-"+13(x, y), x C ORl,h 

R(x, y, h) = 5(x, y), X R2,h, 

where 

8(x,y)=l, x=y, 

=0, xY). 

The suffixes x on the operators Ah and B1 indicate that the operation is with respect 
to x, holding y as a parameter. 

From (3.2) and (3.4) follow the important property that 

(3.5) R(x, y, h) > O for all x, y C Rh . 
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LEMMA 2 (REPRESENTATION THEOREM). For any mesh-function V(x) we have 

V(x) hn E R(x, y, h)[-AhV(y)I + h X R(x, y, h)B1V(y) 
(3.6) yERh aRl, 

+ X R(x,y,h)V(y). 
yE-,R2,h 

4. Some Basic Bounds. To establish convergence of a discrete solution u(x, h) 
of (3.2) to the continuous one of (1.1) we need to establish bounds on various dis- 
crete sums of Robin's functions. These are collected in 

LEMMA 3. If (i) a(x) _ ao > O for x E MRl or (ii) OR E C2,X, X > 0 and Ah(') 

is used over Rh*, then each Robin's function satisfies the inequalities 

(4.1a) h- E R(x, y, h)y(y) < K, 
yCRh* 

(4.1b) h-1 X R(x, y, h) < K, 

(4. 1 c) E R (x, ty, h) < K, 
yEER2,h 

(4.1d) hn E R(x, y, h) <K. 
yGRh 

The quantity y(y) is a function of the a2, f3i only (see (2.3), (2.5)). 
Proof. (i) The proofs are accomplished by introducing special grid functions. 

E.g., taking Ah(') over Rh*, if we define w(x) to be a constant X0 over Rh and Xo - rh 
over ORh, r > 0, then substitution of this w(x) into (3.6) yields the first three in- 
equalities. For the last one we pick the 'square of the distance' function as w(x). 

(ii) If condition (i) of the lemma is not met, then we have to assume condi- 
tions (ii). With this assumption we simply use the fact [2] that there is a function 
4(x) ? C2 (R) such that 

(4.2) - LO(x) > 2, xCR, 

cO0(x)/dn + a(x)4(x) _ 2, x c aRi. 

Utilizing Lemma 3 and the representation formula (3.6) it is now a simple matter 
to establish the following convergence theorem. 

THEOREM 1. Let u ? C3(R?) be the solution of (1.1). Then, with e(x, h) = u(x) 
- u(x, h), we have uniformly in the maximum norm 

(4.3) le(x, h) I Rh-< Kh . 

Observing that in most practical cases we can construct discrete analogues to 
(1.1) as well as smooth functions satisfying (4.2) even when the boundary is only 
piecewise smooth, we look upon case (ii) of the lemma more as a theoretical restric- 
tion. Thus if certain smoothness of the unknown function u(x) in (1.1) is known a 
priori, we can often give some convergence results. 

5. Reduced Regularity Assumptions. In this and the following two sections we 
consider the weakening of the regularity assumptions for problem (1.1)' (i.e., when 
f(x) 0). We begin with the statement of some results established in [4]. 

LEMMA 4. If u C Cm X(R) and Au = 0 in R, then the local errors, i.e., the difference 
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between the continuous and discrete Laplacians, satisfy the inequalities 

(5.1) IAh"'U (x)I ? K[hm+X-2 + hi] , i = 0, 1, x E Rh* 

(5.2) IAhU(X)I < K[hm+x-2 + h2] x E Rh'. 

If, in addition, d(x) > 2h, then we also have 

(5.3) 1 A/U x I < Kh2d(X)X+m,-4, m= 1,2,3, 

<Kh22 m>-4. 

In the above statement d(x) = minUeGR jX - yj and we recall that the superfix 
i of (5.1) selects the appropriate discrete Laplacian. It is important to note that, 
except when m = 1, i = 1, the K in (5.1) is independent of the as, ji. In the ex- 
ceptional case it can be shown that the K is of the form 

where K is now independent of a i, Hj as well as h. Since (5.4) may be unbounded as 
h -* 0, we require the following lemma, which may be proved by using a mesh- 
function which is unity in Rh and vanishes on ORh. 

LEMMA 5. Writing R (1) (x, y, h) for the Robin's function corresponding to Ah(1) over 
Rh*, we have 

(5.5) ~~~hn E R(1) (x, My, h)r(') (y) < Kh ? 
yEERh* 

where t(')(y) depends only on the a i and #,. 
On applying Lemma 4, e.g., to the case m = 1, one finds that the error can be 

uniformly limited to 0(hX) if the basic bounds are sufficiently improved over the set 

R a= {X C Rh'ljd(x) < a} 

for a a > 0 independent of h. It turns out that we can easily extend an estimate of 
type (5.5) (without the factor t(1)) to a boundary strip of width 0(h) (Lemma 6), 
but for the rest of R',6 rather complex analysis appears unavoidable. This we do in 
the next section. 

Definition 1. For h sufficiently small let Ro* = Rh* and define RI*, 1 = 1, 2, ... , 

by 

(5.6) R1* = {E RAh'N(x) n R1_1 s 0, x eT R*(l - 1) U Rj* K 
j= 0) 

We note here that, when h is small enough, for every x E Ro* there is y E N(x) 
such that y is also in R1*. This would then imply that mesh-points in Rh- R*(l + 1) 
would be at least a distance lh from OR. 

LEMMA 6. For 1 a positive integer, 

(5.7) hn I, R (x, MY, h) <_ Kh. 
V ER*( I) 

Proof. For k = 1, 2, * , 1, define wk(x) as zero on 3Rh U R*(k) and unity other- 
wise. 
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6. A Basic Lemma. As suggested by the discussion following Lemma 5, we 
shall, in this section, develop a basic lemma (Lemma 7) that is crucial in the proof 
of the convergence theorem (Theorem 2) under reduced regularity conditions. The 
idea is to include with R(x, y, h) as singular a factor d(y)-P (p > 0) as possible and 
attempt to obtain bounds of the type (4.1d). We begin with the definition of yet 
another subset of Rh. 

Definition 2. For a fixed positive number 5, let 

(6.1) T(l, 5) = {x E RhaX $ R*(l), d(x) < }a 

LEMMA 7. For 1 and a independent of h and a constrained as required in Lemma 8, 
if OR E C2, then 

(6.2) h E R(x, y, h)d( )l- < K(,E)h- 
yGET(1,8) 

where E can be made smaller than any given small positive number but K(E) may be 
unbounded as E -> 0. 

Before we can prove this lemma we need some preliminary results. We take an 
arbitrary point x E T(l, 6). The normal to OR at t through the mesh-point x makes 
an angle Oi with the xi direction. Denoting by yt the (n - l)-dimensional tangent 
plane at t, we let y be the foot of the normal to the plane from x + hi e. ep is the 
normal to OR through e and meeting -y t at r. Also pq is normal to this plane and the 
angle between ey and ep is denoted by 4s. 

Definition 3. For x E OR let ri(x), re(x) be the radii of the largest open balls in 
R and --R (complement of R) respectively, such that they are also tangent to OR 
at x, and let ro be given by 

(6.3) ro= min {ri(x),re(x)} 
xGOaR 

LEMMA 8. With 5 < ro/3 and OR C C2, we have 

(6.4) 1f i Kh, 

ld((x + h) -le- yl ? Kh2. 
The proof of this lemma may be found in [4]. We shall use Lemma 8 to prove the 

following 
LEMMA 9. Let No be a positive integer and E be given by 

(6.5) E-1 = 2No + 1 

Then 

(6.6) lie - yjl1 - d(x + hi)'-"I < Kh2d (x). 
Proof. For any two positive numbers a, b and a positive integer N we have 

(6.7) a - b = (al/N - bl/N) (all'/N + a1-2/Nb2/N + . . . + b (N1) N). 

Since 2No + 1 is an integer, we can let N = 1/e and write 

(6.8) la - bEl < la - bl{a1" + a1-2*be + 4. bl-e}-1 

where the second factor on the right is a finite series of (2No + 1) terms. 
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We employ (6.8) with a =le - yl, b = d(x + hi) and the fact that, for 1 in 
T(l, 5) large enough, 

(6.9) d(x) K min {d(x + hi), le - ylI 
to obtain from (6.4) the inequality 

(6.10J le - yEl - d(x + hi)l _ Kh2d(x)e-1. 

Now, for any real e, a, b and nonnegative integers N 

e_( 
b12Ne 1-2N+le 1-2N+le 

(6.11) a1- b -Ne 
(a + b) + (ab) {2N - b 

- 

a +b 

Consequently we may write {a'-e - bl-e } as a continued fraction of the form 

2,a-b+ (ab)4t( 

a-b + (~ab[ - b+ (ab)2~ b4e + b4t 
1-e 1- 

r 
a2+ b21 (6.12) a -b = at + bt 

But since e satisfies (6.5) we may write (6.12) in the form 

1-e 1-e 1 d2 (ab) M=o 2 a at - b'l = [(a - b)41 + N N- (a 2 L+ 2M le 

(6.13) a' + bt L + N=O H =0 (a2L+lt + b2L+lt)f 

+ (ae - be) NO-1 2Le 2'] 

Now we let a= e - yj, b = d(x + hi) in (6.13), employ (6.9), (6.10), (6.4) and the 
additional facts that d(x + hi) and j e - yI are bounded by K d(x) to complete the 
proof. 

We remark here that the choice of the point x + hi, as e was only for convenience 
of notation. The proof applies for any point within 0(h) of x and in T(l, 5). 

Proof of the Lemma. Given the results of Lemma 9, the proof of Lemma 7 is now 
routine. As in [4] it can be shown that for 0 < ,u < 1 and appropriate 6, the negative 
of the discrete Laplacian of d(x); exceeds Xd(x) -2 for a positive X. Then by defining a 
C1* function which equals 1/X over a 'boundary' strip of width ro/3 and substituting 
it into the representation formula we obtain the lemma. 

7. Error Estimates. In this section we state and comment on the main results 
on the continuously improving rates of convergence of the various approximate 
solutions to (1.1)', with increasing regularity assumptions. In [21 the authors de- 
veloped a 4-point boundary operator with second-order accuracy for the two- 
dimensional case, but with the assumption that for x E aR1(2), a(x) exceeds some 
ao > 0. The results of the last two sections hold also when this operator 52 (say) 
is substituted for 51 in (3.1). Hence we shall state the theorem separately for the 
cases n = 2 and n > 2. In (7.1), 52 must be used for convergence higher than 0(h). 

THEOREM 2. Let u(x) be the solution to problem (1.1)' and u(x, h) to one of the dis- 
crete analogues in (3.2). If OR E C2, u(x) E Imn(R) and e(x, h) u(x) - u(x, h), 
then there is an ho such that for all h < ho, we have 

(i) when n = 2, i = 0, 1 (from Ah(i)) 
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(7.1) < Kh[h' + h + hleI m =2, 

< K[h2e + h+l] m = 3, 

< Kh'+, m > 4 

(ii) when n > 3 

(7.2) Je(xh)lffh< Kh, m =1, 

<Kh, m>2. 

The reader will have no difficulty supplying the proof. Lemmas 4, 6 and 7 together 
with inequalities of the type 

(7 3) d~y) <d(yf2?Kd(y) 1, if X + e-1 > 0 

< Kd(y)l-eh +l, if X + e-1 < 0, 

are used with e(x, h) for V(x) in (3.6) ((7.3) is for case (i), m = 2). It is important 
to observe that when summing over Rh*, in all cases except when m = 1, i = 1, the 
constants K are also independent of al and #h. In the exceptional case (Lemma 4), 
however, we can use Lemma 5 so that in all cases of Theorem 2 the constant K 
remains bounded as h -* 0 for every fixed e in the appropriate set. 

8. Isolated Singularities. In Sections 8 and 9 we extend to the mixed boundary 
problem some of the results obtained for the Dirichlet problem in a recent paper [5] 
by Bramble, Hubbard and Zlamal. u(x) of (1.1) now allows isolated singularities. 
Specifically, we assume that 

u E CM (OR - 

(8.1) ID'u(x)l _ K, 1 _ m, 

<KIx--lm+X-, m+ 1 ? I < M, 

where a is an arbitrarily fixed point in R, m is an integer not exceeding 3 and 
0 < X ? 1. We now assume that the mesh is placed so that 

(8.2) min Ix-oi/h = a > 0. 
zER; x on a mesh line 

Our success in proving convergence theorems will now depend on how closely 
we can majorize the Robin's functions. Let 

(8.3) 2 = Ix-y12 + yfh2 n > 2 

(8.4) v2dx - yl) = j1 log (D/p22), n = 2, 
r2 

(8.5) Vn(|X - yI) = Pn2/arn, n > 3, 

4/n4(X, y) = Vn(jX - yj) x Rh U aR2,h, 

(8.6) n ? 2. 
= Vn(jX - yI) + &n(y) X G aR,,h, 
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The functions vn resembling the continuous Green's functions have in fact been 
proved in [5] to be majorants for the discrete Green's functions when the quantities 
-yn, rn (which depend only on n) are appropriately chosen. The expressions for 7n, rn 
are too long to be repeated here. Our contribution, therefore, is in modifying the vn 
on the boundary such that the Laplacians and boundary operators operating on 
[4bn(x, y) - R(x, y, h)] have the appropriate signs for V4an to qualify as majorants for 
our Robin's functions. For this purpose we find that it is sufficient to take 

(8.7) An(y) = Khl[d(y)IaRl 

where [d(y)]a R, is the distance of y from OR1 and K sufficiently large. We now state 
formally the 

LEMMA 10. For n > 2, let y E Rh- R*(ln) where In > AI n (except that 12 may have 
to exceed 10h when 52 is the boundary operator). Then, taking note of the foregoing 
definition and observations, we have 

(8.8) RI(x, y, h) < 4'n(x, y) + K/d(y)n-l 

The weakness of this bound as d(y) -> 0(h) is reflected in the results of the con- 
vergence theorem which follows. 

THEOREM 3. Let u(x) be the solution of (1.1) satisfying (8.1) and u(x, h) the 
appropriate solution of (3.2). If d(o-) = do > 0, then the error in maximum norm 
|e(x, h)I Rh = |u(x) - u(x, h)I Rh is such that 

(i) corresponding to M = 4, n = 2 and a2, 

(8.9) le(x,h)I ?Rh< K(Edo)hm+XE, 0 < m + X < 2 

< K(E, do)h2, m + X > 2, 

(ii) and corresponding to M = 3, n > 2 and &1, 

(8.10) le(x, h)Il ah < K(E, do) { hm+X+n-2-eIx x- _2-n+e + h} 2 - n <m + X 1 

< K(E, do)h, m + X > 1, 

where K(E, do) may be unbounded as E -+ 0. 
Proof. We shall briefly look at case (ii) for n > 2. Let Q be a closed ball with 

center o- and radius r such that Oh= {x C Rh n Q} C Rh'. Then from Lemma 10 
we have 

Ie(x, h)? h< n [v(x, y) + Kd(y)-n+l]ly -_ a6-nly - Ij+X-3+n-e h 
(8.11) 

+ 0(h). 
If y E Oh - n < p, q < 0, and x, z are such that Ix - yj > ah > 0, I- zI >- 
ah > 0, then (see e.g., [5]) 

(8.12) h I X {x - YjY -zq < K{fx - z+,+q + 11 

Taking z = o, p = 2 -n, q = -n, we have, for x y, 

(8.13) h >uVn(1 XY)( Y _- .De-n o < Kjx _ 12-n+e 
Y G 0 
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The term from the sum in (8.11) for y = x is bounded by 

(8.14) Kh8lx -|^+-3 

The last two inequalities together with the integral inequality 

(8.15) fly - aI-dy < K(e) 

used in (8.11) completes the proof. 
We remark here that, using inequality (6.2), it can be verified that the depen- 

dence of K(E, do) on do is no worse than 0(do-l) as do -O 0(h). 

9. Exterior Problems. We shall consider only the case n = 2. Let R be a region 
that contains the point at infinity and b be a region such that i = D-0. We place 
the origin a in D and map R onto a region D and 1R onto OD by inversion about the 
unit circle with center a. 73 is then a bounded region in E2. We shall again consider 
the problem (1.1) which now becomes an exterior problem with unbounded R. For 
clarity we refer to this as (1.1)". Our method of solution is to write down an equiva- 
lent problem for (1.1)" over 73, solve it by the methods of this paper and deduce the 
approximate solution to (1.1)" from this. In this way we avoid having to deal with 
arbitrarily large, albeit finite, regions and nonuniform spacing. 

Using polar coordinates (r, 0) for a point in R we let 

(9.1) v(p,O) = u(r,G), p = 1/r. 

We denote the normal at (p, 0) to OD by A. It can be shown by a somewhat laborious 
but elementary calculation that 

(9.2) (p) - n (r , 0 (r} ) E OR 

Also we have 

(9.3) Av(p, 0) = p4Au(r, 0) (pX 0) E D. 

Hence equivalent to (1.1)" we have, with obvious notation, 

_Av(p, 0) = 1-4f(p, 0) (p, 0) E D) 

(9.4) I(p ) + (P) v(p, 0) - ( (p, 0) C ODi 
p p 

v(p, 0) = 92(pi ), (p,0 ) C aD2. 

Since a can be chosen such that [du]J D exceeds a positive constant p0, (9.4) is well 
defined with an interior singularity at p = 0. 

We assume that u in (1.1)" is such that 

(9.5)~~~~~ E C (77 - X ) 

ID'u(x)l ?Klxl-' as xl Xo, 0 l I < M + 1. 
Let v(x, h) be the solution of a discrete problem corresponding to (9.4) and let 

(8.2) hold (but now in D). Define 
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(9.6) v(1, h) =u(x, h), 

e(X, h) = v(X, h) -v(x). 

Then we also have 

(9.7) e(x, h) = u (x, h) -u (x) = e (x, h). 

Observing in addition that conditions (9.5) on u imply 

(9.8) V E CM(5 - a) 

ID tv(?) I < K|?-a - al as -->a 

we immediately have the following convergence results as a consequence of Theorem 
3. 

THEOREM 4. If u(x) satisfies (1.1)" and (3.3), then the discretization error e(x, h) 
issuch that,forj = 1 or2in 5jand M = j + 2, 

|e (, h)|R I < K (E)h , < j 

? K(E)hj, n > j. 

Rh, of course, is now the set of points in T? whose inverses are in Dh. 

We shall now look at a special case of (1.1) when a OE R. Theorem 3 is of course 
not valid when a G OR. Let AR be convex at a, and let there be an arc oz of AFR 
which is in OR2. Let f(x) in (1.1) be identically zero and take a, for the approximation 
of the normal derivative together with Ah(,) over Rh*. Let us also assume that in the 
construction of 5, for x E ORih there is always a connection in Rh'. 

THEOREM 5. When the above statements hold, together with (8.2), we have 

Je(x, h)j 3h <! Kh" I v < m +.XA, v < 1/2, 

where Sh, is the result of deleting points of Rh in a small 0(h) neighborhood of a. 
This theorem shall not be proved here as it can be easily adapted from the proof 

of a similar theorem of Wigley [18]. As an application of Theorem 5 we consider, 
e.g., the half-plane problem, 

(9.9) Au(x1,x2) 
= 

O, X2> 0, 

u(x) = g2(x), Xl CO+ X2 = 0, 

with either type of boundary condition permitted on the rest of the xi-axis. If a is the 
point (0, - 1) and C is the unit circle D with center (0, - 2) and radius 1/2, then 
by solving an equivalent problem in D as in Theorem 2 we approximate u(x) of 
(9.9) with the error bounds given by 

THEOREM 6. If 

ID'uI < Klx--1, lx I ,0 

Ig1j < Klxl--"', JX1 XO, X2 = 0, 

when appropriate and 

1921 < Klxthe, nXJ ,X2 = O. 

then 
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l (x, h) I 

v 
Kh' l < 1/2 v 

X 

10. Concluding Remarks. In the case when a- E] R2 is such that 

(10.1) min a- - xi ? o (a positive constant) 
xeO1? 

one expects the results to be as good as for the Dirichlet problem. We discuss an 
approach here that deals with case n = 2 adequately. Define a function 

(10.2) yb(x) = yp(x)o with p2 = Ix12 + ah2 

where a and y are constants satisfying certain requirements given below, 0 <j3 < 1, 
and a is again the origin. For x C Rh' it is easily verified that 

(10.3) -Ah+l(X) < 
-IX1X| A X El Rh 

provided we choose a, -y such that for c2 < 1, 

(10.4) p(x)2 > C2p()2, x Rh, L(x), 

(10.5) a! >0-4/2 

and 

(10.6) 7t (1 + a/a2) (-2) /2 > 1 

We have a similar inequality for x C Rh* if a further satisfies 

(10.7) a > (4(2 _3)cO3)2 

Putting these together in the representation formula we will arrive at 

h2 E R(x, y, h)ly _1f-2 < K ER(x, y h)-ly - $l"+ K 
(10.8) yGRh* &GRl 

h E R(x,y,h)ly <-2<K E R(x,y,h)1y-ariJ1+K. 
yeRh yEaR1 

Hence if (10.1) is satisfied, then taking M = 3 and operators Ah(') and 51, (10.8) 
yields 

(10.9) le (x, h) I _ K (or, e) [hm+\ e + h] 

In conclusion we wish to point out that there are several special cases where 
even when a- e OR1, convergence results are possible. For instance, if MR1 includes 
a rectilinear part and if a- happens to be on this part then by placing the grid ap- 
propriately and taking simple first-order approximations to the normal derivative 
on the rectilinear part, we can obtain bounds exactly as in (10.9). This is so because 
the Robin's function can be bounded by an essentially logarithmic function. Also 
when rectilinear arcs meet at corners with interior angles not exceeding 7r/2, similar 
bounds are obtained by adding further logarithmic functions with poles strategically 
placed outside the region. These little findings encourage us to conjecture that 
bounds for R(x, y) exist which are less singular than Klx - yl-n+l for general 
boundaries. This would mean when n 2, for example, that even if the solution is 
only H6lder continuous at some points of OR1, convergence can be achieved for 
certain-values of A\ 
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